课程咨询

雅思备考规划

扫码添加助教免费咨询雅思备考规划

扫码关注回复雅思获取最新雅思口语题库和备考资料

雅思阅读模拟练习题:配对题(27)

2015-07-20 18:10:29来源:网络 柯林斯词典

  新东方在线雅思网特为大家准备了雅思阅读模拟练习题:配对题(27)。雅思模拟试题在雅思备考过程中所起的作用不可小觑,通过模拟练习题,我们可以很直接地了解到自己的备考状况,从而可以更有针对性地进行之后的复习。希望以下内容能够对大家的雅思备考有所帮助!更多雅思报名官网的最新消息,最新、最专业的雅思备考资料,新东方在线雅思网将第一时间为大家发布。

  Flawed Beauty: the problem with

  toughened glass

  On 2nd August 1999, a particularly hot day in the town of Cirencester in the UK, a large pane of toughened glass in the roof of a shopping centre at Bishops Walk shattered without warning and fell from its frame. When fragments were analysed by experts at the giant glass manufacturer Pilkington, which had made the pane, they found that minute crystals of nickel sulphide trapped inside the glass had almost certainly caused the failure.

  ‘The glass industry is aware of the issue,' says Brian Waldron, chairman of the standards committee at the Glass and Glazing Federation, a British trade association, and standards development officer at Pilkington. But he insists that cases are few and far between. 'It's a very rare phenomenon,' he says.

  Others disagree. 'On average I see about one or two buildings a month suffering from nickel sulphide related failures,' says Barrie Josie, a consultant engineer involved in the Bishops Walk investigation. Other experts tell of similar experiences. Tony Wilmott of London-based consulting engineers Sandberg, and Simon Armstrong at CladTech Associates in Hampshire both say they know of hundreds of cases. 'What you hear is only the tip of the iceberg,' says Trevor Ford, a glass expert at Resolve Engineering in Brisbane, Queensland. He believes the reason is simple: 'No-one wants bad press.'

  Toughened glass is found everywhere, from cars and bus shelters to the windows, walls and roofs of thousands of buildings around the world. It's easy to see why. This glass has five times the strength of standard glass, and when it does break it shatters into tiny cubes rather than large, razor-sharp shards. Architects love it because large panels can be bolted together to make transparent walls, and turning it into ceilings and floors is almost as easy.

  It is made by heating a sheet of ordinary glass to about 620°C to soften it slightly, allowing its structure to expand, and then cooling it rapidly with jets of cold air. This causes the outer layer of the pane to contract and solidify before the interior. When the interior finally solidifies and shrinks, it exerts a pull on the outer layer that leaves it in permanent compression and produces a tensile force inside the glass. As cracks propagate best in materials under tension, the compressive force on the surface must be overcome before the pane will break, making it more resistant to cracking.

  The problem starts when glass contains nickel sulphide impurities. Trace amounts of nickel and sulphur are usually present in the raw materials used to, make glass, and nickel can also be introduced by fragments of nickel alloys falling into the molten glass. As the glass is heated, these atoms react to form tiny crystals of nickel sulphide. Just a tenth of a gram of nickel in the furnace can create up to 50,000 crystals.

  These crystals can exist in two forms: a dense form called the alpha phase, which is stable at high temperatures, and a less dense form called the beta phase, which is stable at room temperatures. The high temperatures used in the toughening process convert all the crystals to the dense, compact alpha form. But the subsequent cooling is so rapid that the crystals don't have time to change back to the beta phase. This leaves unstable alpha crystals in the glass, primed like a coiled spring, ready to revert to the beta phase without warning.

  When this happens, the crystals expand by up to 4%. And if they are within the central, tensile region of the pane, the stresses this unleashes can shatter the whole sheet. The time that elapses before failure occurs is unpredictable. It could happen just months after manufacture, or decades later, although if the glass is heated—by sunlight, for example—the process is speeded up. Ironically, says Graham Dodd, of consulting engineers Arup in London, the oldest pane of toughened glass known to have failed due to nickel sulphide inclusions was in Pilkington's glass research building in Lathom, Lancashire. The pane was 27 years old.

  Data showing the scale ot the nickel sulphide problem is almost impossible to find. The picture is made more complicated by the fact that these crystals occur in batches. So even if, on average, there is only one inclusion in 7 tonnes of glass, if you experience one nickel sulphide failure in your building, that probably means you've got a problem in more than one pane. Josie says that in the last decade he has worked on over 15 buildings with the number of failures into double figures.

  One of the worst examples of this is Waterfront Place, which was completed in 1990. Over the following decade the 40- storey Brisbane block suffered a rash of failures. Eighty panes of its toughened glass shattered due to inclusions before experts were finally called in. John Barry, an expert in nickel sulphide contamination at the University of Queensland, analysed every glass pane in the building. Using a studio camera, a photographer went up in a cradle to take photos of every pane. These were scanned under a modified microfiche reader for signs of nickel sulphide crystals. 'We discovered at least another 120 panes with potentially dangerous inclusions which were then replaced,' says Barry. 'It was a very expensive and time-consuming process that took around six months to complete.' Though the project cost A$1.6 million (nearly £700,000), the alternative—re-cladding the entire building—would have cost ten times as much.


为你特别匹配的雅思超值课程,祝你和雅思分手!
  • 新东方5月雅思公开讲座

    新东方雅思5月公开讲座

    新东方教师直播教你全科技巧!

    每天1小时

    查看详情
  • 雅思机考实战

    雅思机考实战

    剑桥雅思正版题目机考实战!

    每天1小时

    查看详情
  • 【知心雅思】6分录播课 (A类)

    【知心雅思】6分录播课 (A类)

    适合人群:想要冲6分的考生

    课时:434

    查看详情
  • 【知心雅思】6.5分录播课 (A类)

    【知心雅思】6.5分录播课 (A类)

    适合人群:想要冲6.5分的考生

    课时:464

    查看详情
  • 【知心雅思】7分录播课 (A类)

    【知心雅思】7分录播课 (A类)

    适合人群:想要冲7分的考生

    课时:443

    查看详情
雅思备考资料包

扫码添加助教

免费获取雅思备考资料包

更多资料
更多>>
更多内容

移动学习

二维码

2024年1月-4月雅思口语题库

扫码添加助教号 回复【新题】 即可领取
更多>>
更多公开讲座>>

2024年雅思考试重点题

微信添加助教 回复【考试重点题】

助教微信
更多>>
更多资料