课程咨询

雅思备考规划

扫码添加助教免费咨询雅思备考规划

扫码关注回复雅思获取最新雅思口语题库和备考资料

2018年雅思阅读模拟题精选(六)

2018-05-09 10:47:00来源:网络 柯林斯词典

  以下是新东方在线雅思网给大家分享的2018年雅思阅读模拟题精选(六)。希望对大家的雅思备考有所帮助,更多雅思备考资料欢迎大家随时关注新东方在线雅思网。

>>>点击查看2018年雅思阅读模拟题精选汇总

  Sun's fickle heart may leave us cold 25 January 2007 From New Scientist Print Edition. Stuart Clark

  1 There's a dimmer switch inside the sun that causes its brightness to rise and fall on timescales of around 100,000 years - exactly the same period as between ice ages on Earth. So says a physicist who has created a computer model of our star's core.

  2 Robert Ehrlich of George Mason University in Fairfax, Virginia, modelled the effect of temperature fluctuations in the sun's interior. According to the standard view, the temperature of the sun's core is held constant by the opposing pressures of gravity and nuclear fusion. However, Ehrlich believed that slight variations should be possible.

  3 He took as his starting point the work of Attila Grandpierre of the Konkoly Observatory of the Hungarian Academy of Sciences. In 2005, Grandpierre and a collaborator, Gábor ágoston, calculated that magnetic fields in the sun's core could produce small instabilities in the solar plasma. These instabilities would induce localised oscillations in temperature.

  4 Ehrlich's model shows that whilst most of these oscillations cancel each other out, some reinforce one another and become long-lived temperature variations. The favoured frequencies allow the sun's core temperature to oscillate around its average temperature of 13.6 million kelvin in cycles lasting either 100,000 or 41,000 years. Ehrlich says that random interactions within the sun's magnetic field could flip the fluctuations from one cycle length to the other.

  5 These two timescales are instantly recognisable to anyone familiar with Earth's ice ages: for the past million years, ice ages have occurred roughly every 100,000 years. Before that, they occurred roughly every 41,000 years.

  6 Most scientists believe that the ice ages are the result of subtle changes in Earth's orbit, known as the Milankovitch cycles. One such cycle describes the way Earth's orbit gradually changes shape from a circle to a slight ellipse and back again roughly every 100,000 years. The theory says this alters the amount of solar radiation that Earth receives, triggering the ice ages. However, a persistent problem with this theory has been its inability to explain why the ice ages changed frequency a million years ago.

  7 "In Milankovitch, there is certainly no good idea why the frequency should change from one to another," says Neil Edwards, a climatologist at the Open University in Milton Keynes, UK. Nor is the transition problem the only one the Milankovitch theory faces. Ehrlich and other critics claim that the temperature variations caused by Milankovitch cycles are simply not big enough to drive ice ages.

  8 However, Edwards believes the small changes in solar heating produced by Milankovitch cycles are then amplified by feedback mechanisms on Earth. For example, if sea ice begins to form because of a slight cooling, carbon dioxide that would otherwise have found its way into the atmosphere as part of the carbon cycle is locked into the ice. That weakens the greenhouse effect and Earth grows even colder.

  9 According to Edwards, there is no lack of such mechanisms. "If you add their effects together, there is more than enough feedback to make Milankovitch work," he says. "The problem now is identifying which mechanisms are at work." This is why scientists like Edwards are not yet ready to give up on the current theory. "Milankovitch cycles give us ice ages roughly when we observe them to happen. We can calculate where we are in the cycle and compare it with observation," he says. "I can't see any way of testing [Ehrlich's] idea to see where we are in the temperature oscillation."

  10 Ehrlich concedes this. "If there is a way to test this theory on the sun, I can't think of one that is practical," he says. That's because variation over 41,000 to 100,000 years is too gradual to be observed. However, there may be a way to test it in other stars: red dwarfs. Their cores are much smaller than that of the sun, and so Ehrlich believes that the oscillation periods could be short enough to be observed. He has yet to calculate the precise period or the extent of variation in brightness to be expected.

  11 Nigel Weiss, a solar physicist at the University of Cambridge, is far from convinced. He describes Ehrlich's claims as "utterly implausible". Ehrlich counters that Weiss's opinion is based on the standard solar model, which fails to take into account the magnetic instabilities that cause the temperature fluctuations.(716 words)

  Complete each of the following statements with One or Two names of the scientists from the box below.

本文关键字: 雅思阅读模拟题

为你特别匹配的雅思超值课程,祝你和雅思分手!
  • 新东方5月雅思公开讲座

    新东方雅思5月公开讲座

    新东方教师直播教你全科技巧!

    每天1小时

    查看详情
  • 雅思机考实战

    雅思机考实战

    剑桥雅思正版题目机考实战!

    每天1小时

    查看详情
  • 【知心雅思】6分录播课 (A类)

    【知心雅思】6分录播课 (A类)

    适合人群:想要冲6分的考生

    课时:434

    查看详情
  • 【知心雅思】6.5分录播课 (A类)

    【知心雅思】6.5分录播课 (A类)

    适合人群:想要冲6.5分的考生

    课时:464

    查看详情
  • 【知心雅思】7分录播课 (A类)

    【知心雅思】7分录播课 (A类)

    适合人群:想要冲7分的考生

    课时:443

    查看详情
雅思备考资料包

扫码添加助教

免费获取雅思备考资料包

更多资料
更多>>
  • 雅思备考英文书推荐汇总

    很多考鸭在备考过程中会想去寻找一些原文资料,想要轻松有效地提升自己的雅思水平,这是非常不错的做法! 本文主要为大家介绍实用的英文书籍,希望对大家的雅思备考有所帮助。

    来源 : 网络综合整理 2023-12-06 22:26:00 关键字 : 雅思备考 英文书 英文原籍

  • 雅思备考英文书推荐(六)

    很多考鸭在备考过程中会想去寻找一些原文资料,想要轻松有效地提升自己的雅思水平,这是非常不错的做法! 本文主要为大家介绍实用的英文书籍,希望对大家的雅思备考有所帮助。

    来源 : 网络综合整理 2023-12-06 22:23:00 关键字 : 雅思备考 英文书 英文原籍

  • 雅思备考英文书推荐(五)

    很多考鸭在备考过程中会想去寻找一些原文资料,想要轻松有效地提升自己的雅思水平,这是非常不错的做法! 本文主要为大家介绍实用的英文书籍,希望对大家的雅思备考有所帮助。

    来源 : 网络综合整理 2023-12-06 22:06:00 关键字 : 雅思备考 英文书 英文原籍

  • 雅思备考英文书推荐(四)

    很多考鸭在备考过程中会想去寻找一些原文资料,想要轻松有效地提升自己的雅思水平,这是非常不错的做法! 本文主要为大家介绍实用的英文书籍,希望对大家的雅思备考有所帮助。

    来源 : 网络综合整理 2023-12-06 21:36:00 关键字 : 雅思备考 英文书 英文原籍

  • 雅思备考英文书推荐(三)

    很多考鸭在备考过程中会想去寻找一些原文资料,想要轻松有效地提升自己的雅思水平,这是非常不错的做法! 本文主要为大家介绍实用的英文书籍,希望对大家的雅思备考有所帮助。

    来源 : 网络综合整理 2023-12-06 21:27:00 关键字 : 雅思备考 英文书 英文原籍

更多内容

移动学习

二维码

2024年1月-4月雅思口语题库

扫码添加助教号 回复【新题】 即可领取
更多>>
更多公开讲座>>

2024年雅思考试重点题

微信添加助教 回复【考试重点题】

助教微信
更多>>
更多资料